enter image description here" />
I want the icon (logo) to be at the left side. My code puts it above the university name. How do I put the logo at the left side of university name etc.
asked Oct 18, 2015 at 6:47 1,457 4 4 gold badges 17 17 silver badges 36 36 bronze badgesWhat exactly is your question here? Also could you maybe add the picture "por" or else put a % -sign before that part of your code?
Commented Oct 18, 2015 at 7:01 @Wamseln want to adjust the icon on the left side Commented Oct 18, 2015 at 7:40 Are you looking for a package to typeset exercises? The exam package supports this. Commented Oct 18, 2015 at 7:49@ChristianLindig no i just want to shift the icon on the left side of the university name, above code show me the icon in the center.
Commented Oct 18, 2015 at 7:56Unrelated note: Don't use $$ . $$ for displayed math, use \[ . \] instead. See e.g. Why is \[ . \] preferable to $$ . $$?
Commented Oct 18, 2015 at 9:07Use tabular ; I set a 1cm separation between the image and the header, adjust it to suit you.
Note that the header is centered, because the image is included in a zero width box.
Please, use boldface or italic for emphasis, not underlining. Also avoid $$ in LaTeX; I showed the usage of gather* in the second question.
\documentclass[11pt,paper=a4,answers] \usepackage[ paperheight=10.5in, paperwidth=8.27in, bindingoffset=0in, left=0.8in, right=1in, top=0.7in, bottom=1in, headsep=.5\baselineskip ] \usepackage \usepackage \usepackage \censorruledepth=-.2ex \censorruleheight=.1ex \flushbottom \usepackage \pagestyle \headrule \newcommand<>% > \runningheader \footrule \footer <> <\ifincomplete<\footnotesize Question \IncompleteQuestion\ continues on the next page\ldots> <\iflastpage<\footnotesize End of exam>>> \crefname \crefname %============================================================== \renewcommand\thequestion\renewcommand<\questionlabel> <\thequestion)>\renewcommand<\questionshook>% \setlength<\labelwidth><-\labelsep>% > \pointsinrightmargin \pointsdroppedatright \marksnotpoints \marginpointname < \points>\pointformat %\bracketedpoints \begin \thispagestyle \begin \makebox[0pt][r]c@<>> \includegraphics[width=1cm] \end% \hspace% % \beginc@<>> \bfseries Name of the University\\ \itshape Campus name \\ \bfseries Mid term examination -- Spring 2013 \\ \bfseries SUBJECTIVE \end \end \begin[t]l@<>>% Degree Program: Mathematics \\ Course Title: Course Title\\ Date of Examination: 9.6.2014 \\ Teacher's name: ABCD \\ Student's name: \makebox[1.5in] <\hrulefill>\\ Course Code: Math-506 \end\hspace>% \begin[t]l@<>> Class: BS \\ Semester: 2nd \\ Time duration: 3 hours \\ Total Marks: 60 \\ Roll No: \makebox[1in] <\hrulefill>\end\hspace*> \bigskip \begin \question[6] \label For a surface $\vec= \vec (u \cos v, u \sin v, f(u))$. Write down the first fundamental form of the surface. Show that the parametric curves are orthogonal. \droppoints \question[10] \label Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \begin U \frac<\partial T><\partial \dot > - V \frac<\partial T><\partial \dot> \end where \begin U = \frac \Bigl(\frac<\partial T><\partial \dot>\Bigr) - \frac<\partial T> <\partial u>= \frac\frac\frac<\partial T><\partial \dot> \\ V = \frac \Bigl(\frac<\partial T><\partial \dot >\Bigr) - \frac<\partial T> <\partial v>= \frac\frac\frac <\partial T><\partial \dot > \end \droppoints \end \end
enter image description here" />
answered Oct 18, 2015 at 9:26 1.2m 141 141 gold badges 2.7k 2.7k silver badges 4.3k 4.3k bronze badges how I remove the equation number Commented Oct 18, 2015 at 9:30 @MickyK \begin. \end Commented Oct 18, 2015 at 9:37Load array package (for m column type) and then use a tabular like
\begin>% \includegraphics[width=1cm] & \centering \underline\par \underline \par \underline \par \underline\par \end
Full code (thanks for leaking the entire question paper ;-) ):
\documentclass[11pt,paper=a4,answers] \usepackage \usepackage \usepackage \censorruledepth=-.2ex \censorruleheight=.1ex \hyphenpenalty 10000 \usepackage[paperheight=10.5in,paperwidth=8.27in,bindingoffset=0in,left=0.8in,right=1in, top=0.7in,bottom=1in,headsep=.5\baselineskip] \flushbottom \usepackage[normalem] \renewcommand\ULthickness %%---> For changing thickness of underline \setlength\ULdepth%\maxdimen ---> For changing depth of underline \renewcommand \pagestyle \pagestyle \headrule \newcommand<>% > \runningheader \footrule \footer <> <\ifincomplete<\footnotesize Question \IncompleteQuestion\ continues on the next page\ldots> <\iflastpage<\footnotesize End of exam>>> \usepackage \crefname \crefname %============================================================== \renewcommand\thequestion\renewcommand<\questionlabel> <\thequestion)>\renewcommand<\questionshook>% \setlength<\labelwidth><-\labelsep>% > \pointsinrightmargin \pointsdroppedatright \marksnotpoints \marginpointname < \points>\pointformat %\bracketedpoints \begin \thispagestyle \noindent \begin >% \includegraphics[width=1cm] & \centering \underline\par \underline \par \underline \par \underline\par \end \par \bigskip\bigskip \begin[t]% Degree Program: Mathematics \par Course Title: Course Title\par Date of Examination: 9.6.2014 \par Teacher's name: ABCD \par Student's name: \makebox[1.5in] <\hrulefill>\par Course Code: Math-506 \end% \hfill \begin[t]% Class: BS \par Semester: 2nd \par Time duration: 3 hours \par Total Marks: 60 \par Roll No: \makebox[1in] <\hrulefill>\end \par \bigskip \begin \question[6] \label For a surface $\vec= \vec (u \cos v, u \sin v, f(u))$. Write down the first fundamental form of the surface. Show that the parametric curves are orthogonal. \droppoints \question[10] \label Prove that necessary conditions for the curve $u = u(t), v = v(t)$ on a surface $\vec(r) = \vec(r)(u,v)$ to be geodesic is that \beginU \frac<\partial T><\partial \dot > - V \frac<\partial T><\partial \dot>\end where $$ U = \frac \Big(\frac<\partial T><\partial \dot>\Big) - \frac<\partial T> <\partial u>= \frac\frac\frac<\partial T><\partial \dot>$$ $$ V = \frac \Big(\frac<\partial T><\partial \dot >\Big) - \frac<\partial T> <\partial v>= \frac\frac\frac <\partial T><\partial \dot >$$ \droppoints \question[8] \label For the curve $$ x = a(3u - u^),\qquad y = 3au^,\qquad z = a(3u + u^) $$ show that $$\uptau = k = \frac<3a(1+u^)^>$$ \droppoints \question[8] \label A curve is uniquely determined except as the position in space, when its curvature and torsion are given functions of its arc length. \droppoints \question[8] \label Show that there exists an infinite family of involutes for a gives curve. \droppoints \newpage \question[08] \label Give short answers of the following questions. \begin \item \item If equation of the circle is $x^ + y^ = a^$ then the parametric equations of circles are \xblackout? \end \end \begin \rule \end \end
enter image description here" />
If you want to move the logo closer, use two tabular s like below:
. . . \thispagestyle \noindent < \centering \begin% \includegraphics[width=1cm] \end \begin% \underline\\ \underline \\ \underline \\ \underline\ \end \par > \bigskip\bigskip . . .